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Abstract

An important research problem is how to automatically
and efficiently find the best Convolutional Neural Network
(CNN) with both high classification performance and com-
pact architecture with high training and prediction speeds,
small power usage, and small memory size for Artifi-
cial Intelligence of Things (AIoT) applications. A“Single-
function CNN” (SCNN) using one activation function, such
as Google’s Inception-V4 using ReLU, may not always be
optimal for different image classification problems. A “Multi-
function CNN” (MCNN), which uses different activation
functions for different neurons, can outperform a SCNN. A
“Compressed Multi-function CNN” (CMCNN) is made from
a larger MCNN such that the number of convolutional layers
is reduced. A new compensatory algorithm using a new ge-
netic algorithm (GA) is created to find the best CMCNN with
an ideal compensation between performance and architec-
ture size. Simulations using the CIFAR10 dataset showed that
the new compensatory algorithm could find CMCNNs that
could outperform non-compressed MCNNs in terms of clas-
sification performance (F1-score), speed, power usage, and
memory usage. Effective, fast, power-efficient, and memory-
efficient CMCNNs based on other popular CNN architec-
tures, such as a ResNet, will be developed and optimized for
users to solve important AIoT application problems.

Introduction
Recently, deep learning techniques have been effectively
used in various applications in computer vision, healthcare,
etc. Convolutional Neural Networks (CNNs) are powerful
techniques for image classification for various important
real-world applications (LeCun et al. 2015; Krizhevsky et
al. 2012; He et al. 2016; Esteva et al. 2017; Szegedy et al.
2015; Szegedy et al. 2017). Some examples are GoogLeNet,
ResNets, DenseNets, Dual Path Networks, and Inception-
V4 networks. Traditional CNNs tend to use the same activa-
tion function (typically ReLU) for all convolutional layers.
For example, both ResNets (He et al. 2016) and the very
deep Inception-v4 network (Szegedy et al. 2017) use the
ReLU for their activation functions. However, Compared to
smaller networks, larger networks would need more mem-
ory, longer training times (less power-efficient), longer pre-
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diction times, and more data in order to perform and gen-
eralize well. Therefore, it would be advantageous to try to
make CNNs smaller in size for real-world applications. For
example, it is useful to build a compact deep neural net-
work (DNN) on an Internet-of-Things (IoT) device to ensure
high DNN model inference accuracy, low inference latency,
high throughput, and low power consumption (Zhang et al.
2019). A new bi-directional co-design approach was devel-
oped to optimize both DNN models and their deployment
configurations on IoT devices on FPGAs to achieve high ac-
curacy, high throughput and high energy efficiency (Zhang
et al. 2019). The architecture-aware optimization framework
was implemented to efficiently run compressed DNN to out-
perform all the state-of-the-art dense DNN execution frame-
works such as TensorFlow Lite (Niu et al. 2019). A new
context-adaptive binary arithmetic coder was made to com-
press deep neural networks with very high compression ra-
tios across many different network architectures and datasets
(Wiedemann et al. 2019).

Neural architecture search (NAS) is an important subfield
of automated machine learning (AutoML). Much work has
already been done in NAS and AutoML. For instance, a
NAS method with optimal arithmetic bit length allocation
and neural network pruning was able to search for the con-
figurations with a computational complexity budget while
maximizing the accuracy (Zur et al. 2019). A single-path
NAS method, a novel differentiable NAS method for de-
signing device-efficient ConvNets, was up to 5,000x faster
compared to prior methods (Stamoulis et al. 2019). A new
instance-ware NAS framework can search for a distribu-
tion of architectures in a multiple-objective NAS setting to
get either higher accuracy with same latency or significant
latency reduction without compromising accuracy against
MobileNetV (Cheng et al. 2019). The NAS ensemble al-
gorithm called AdaNAS could improve the performance of
NAS models while having a similar parameter count as sin-
gle large model (Macko et al. 2019). In particular, evolu-
tionary approaches, such as Genetic Algorithms (GAs), have
been used for NAS. For example, GA was used to opti-
mize the number of layers and the number of neurons of
each layer of a CNN that used one activation function (Sun
et al. 2018; You et al. 2015). Also, a multi-objective GA



was used for NAS by proposing a new algorithm called
NSGA-Net (Lu et al. 2018). The results for both exam-
ples showed that using GA could be useful for optimizing a
CNN’s architecture and performance at the same time. The
new evolutionary-neural hybrid agents outperformed both
neural and evolutionary agents for text classification and im-
age classification benchmarks (Maziarz et al. 2019).

Deep learning models like CNNs, such as Inception-V4,
have a lot of parameters and very long training times. Some
work was done in pruning CNNs to be smaller (Molchanov
et al. 2016).

A MCNN using different activation functions can outper-
form a SCNN using one activation function (Zhang, 2018).
In this paper, we newly designed a new GA to automati-
cally optimize CMCNNs and select the best CMCNN that
takes into account both the image classification performance
and architecture size. The goal is to find the best CMCNN
with high performance, small architecture size, and fast pre-
diction time. Such an effective, fast, power-efficient, and
memory-efficient CMCNN is useful for practical AIoT ap-
plications, such as AI chips, and mobile biomedical imaging.

Compressed Multi-function CNNs
It is useful to make CNN architecture smaller (i.e. removing
layers) and making it “multi-function” can lead to better per-
formance, faster speeds in training and prediction, lower en-
ergy consumption, and lower memory usage for a particular
image classification problem. Let this new CNN be denoted
as “Compressed Multi-function Inception-V4” (CMI).

Let “CMIi” and “CIi” mean that a CMI and a
compressed Inception-V4 with ReLU have i Inception-A
block(s), i + 1 Inception-B block(s), and i Inception-C
block(s) for i = 1, 2, and 3. For CMI1, the number of
activation functions is 58, CMI2 has 85 activation func-
tions, and CMI3 has 112. In Tables 1 and 2, “MI” and
“I” mean that a MI and the original Inception-V4 with
ReLU have 4 Inception-A, 7 Inception-B, and 3 Inception-C
blocks. Stratified 3-fold cross validation was used to evalu-
ate and compare the three CMI models, the MI model, the
three compressed Inception-V4 models with ReLU, and the
original Inception-V4 using multi-class classification met-
rics (i.e. training F1-score (F1train), validation F1-scores
(F1valid), training times (Ttrain) in seconds, and classifica-
tion testing times (Ttest) in seconds. An activation function
set {ReLU, SIG, TANH, ELU} was used to build all of the
MCNNs. Each activation function is randomly chosen from
this set for each convolutional block (CB). Table 1 shows
the number of CBs, model sizes, and numbers of activation
functions used for CMI1, CMI2, CMI3, and MI .

Table 1: Comparison between Different Compressed Multi-
function Inception-V4 Architectures and the Multi-function
Inception-V4 Architecture

Model: CMI1 CMI2 CMI3 MI
No. CBs 58 85 112 149
Model Size (MB) 129 190 252 323
No. Functions 58 85 112 149

Table 2: Performance Comparison between Different Com-
pressed Multi-function Inception-V4 Architectures and the
Original Inception-V4 Architecture (stratified 3-fold cross
validation, 120 epochs)

Model: CMI1 CMI2 CMI3 MI I
F1train 0.78 0.85 0.86 0.84 0.70
F1test 0.76 0.82 0.86 0.83 0.68
Ttrain(s) 2229 3081 3978 5082 4815
Ttest(s) 1.24 1.54 1.88 2.41 2.31

New compensatory CMCNN model selection
algorithms using GA

CNN model selection with multi-objective
optimization
We consider a four-objective optimization problem: maxi-
mizing performance, maximizing speed, minimizing energy
usage, and minimizing memory usage by optimizing CM-
CNN’s hyperparameters (i.e. numbers of layers, numbers of
neurons in layers, and activation functions of neurons).

The energy E is directly proportional to the execution
time T (Li 2008). If the number of convolutional layers of
a CMCNN is reduced, then the execution time and energy
consumption are also reduced. In addition, a CNN model
size (i.e., memory usage) is reduced too. Thus, the four-
objective optimization problem becomes a two-objective op-
timization problem: maximizing performance and minimiz-
ing the number of convolutional layers of a CMCNN.

A simple optimization function (the fitness function for
GA) is defined as α = wF1train + (1 − w)(1 − S) where
w for 0 ≤ w ≤ 1 is a weight, and S is a metric related to
a property of a CMCNN architecture, such as a ratio of the
model sizes between a CMCNN and a popular CNN. A user
can choose a value for w.

New compensatory CMCNN model selection
algorithms using GA
A MCNN has n convolutional layers; each convolutional
layer is followed by f ∈ {f1, f2, ..., fm} where fi is an
activation function for i = 1, 2, ...,m. There are mn − m
different MCNNs and m different traditional CNNs that use
the same activation function for all neurons. Since there
are too many different MCNNs, it is inefficient and un-
necessary to test each one. Thus, we develop a new GA.
A MCNN’s activation functions can be represented by a
string [g1g2g3......gn] where gi ∈ {f1, f2, ..., fm} for i =
1, 2, ..., n. The new GA method has two operations: a newly
defined mutation and a traditional crossover. For a given
string [a1a2a3......an] where ai ∈ {f1, f2, ..., fm} for i =
1, 2, ..., n, a new mutation operation with a mutation point j
for j ∈ {1, 2, 3, ..., n} results in [a1a2...aj−1cjaj+1...an]
where cj ∈ {f1, f2, ..., fm} and cj 6= aj . For two par-
ent strings [a1a2a3......an] where ai ∈ {f1, f2, ..., fm}
and [b1b2b3......bn] where bi ∈ {f1, f2, ..., fm} for i =
1, 2, ..., n, a crossover operation with a crossover point k
for k ∈ {2, 3, ..., n − 1} results in two new child strings



[a1a2...akbk+1bk+2...bn] and [b1b2...bkak+1ak+2...an]. The
new GA method is shown in Algorithm 1 where F is a fit-
ness function.

Algorithm 1 A New GA for Optimizing MCNN Models
Input: initial population of N MCNN models where N is

an even number, training data
Output: the best MCNN model

1: Create a population of an even number of MCNN mod-
els with randomly generated activation functions where
each function has equal probability of being chosen.

2: Train all MCNN models in the population.
3: Compute F for each trained MCNN model in the popu-

lation. Keep the top MCNN with the highest F .
4: Select pairs of MCNNs’ function strings.
5: Perform crossover on each pair of MCNNs’ function

strings to generate new MCNNs’ function strings.
6: Perform the newly defined mutation operations on the

new MCNNs’ activation function strings based on the
mutation probability.

7: Create a new population that includes the newly created
MCNNs’ activation function strings and the parents.

8: Train all MCNN models in the new population.
9: Compute F for each trained MCNN model in the new

population.
10: Repeat steps 4 to 9 for a generation until the maximum

number of generations is reached.

A new CMCNN model selection method using a new
GA is shown in Algorithm 2. The new GA using the new
mutation operator for optimizing MCNN models is shown
in Algorithm 2.

Algorithm 2 Compensatory CMCNN Model Selection Us-
ing Algorithm 1
Input: initial population of N MCNN models where N is

an even number, training data
Output: the best CMCNN model

1: For each compressed architecture, create an initial pop-
ulation (N CMCNNs) for an even positive integer N .

2: For each compressed architecture, run Algorithm 1 to
find the best CMCNN with the highest F . Calculate α
for this best CMCNN.

3: Choose the overall best compensatory CMCNN with the
highest α among all the best CMCNNs of different com-
pressed architectures.

4: Use the overall best compensatory CMCNN for a real-
world application.

Simulation results and performance analysis
Let “CLs” mean convolutional layers. Let “CMn” mean
that a CMCNN has n CLs with n activation functions. Let
“CMn

GA” mean that a CMCNN optimized by the new GA
has n CLs with n activation functions. Let “Mm” mean
that a non-compressed MCNN has m CLs with m activa-
tion functions for m > n. Then we define the model size

ratio as S = (number of CLs)/m. A fitness function F is de-
fined by α = wF1train + (1 − w)(1 − S) for w = 0.7 for
simulations. An activation function set {ReLU, SIG, TANH,
ELU} was used; each function was randomly chosen from
this set for each CL. CM4

GA, CM6
GA, and CM8

GA were
compared with M10. Samples of the CIFAR10 data were
used (Krizhevsky 2009). The population of the new GA has
four randomly generated CNNs. The mutation probability
is 1. Table 3 shows the numbers of convolutional layers,
model sizes (in KB), S, and average training times (Ttrain)
(in seconds) of one CNN model of CM4

GA, CM4, CM6
GA,

CM6, CM8
GA, CM8, M10

GA, and M10 for 25000 training
data. Tpredict(s) is the total prediction time for 7000 test-
ing data. Table 3 shows that CMCNNs use less memory,
less training times (i.e., less power usage), less prediction
times, and smaller numbers of CLs than M10 (a MCNN).
CMk

GA has longer training time than CMk for k = 4, 6, 8,
and M10

GA has longer training time than M10.

Table 3: Properties of different models
Model: CM4

GA CM4 CM6
GA CM6 CM8

GA CM8 M10
GA M10

CLs 4 4 6 6 8 8 10 10
Size 454 454 507 507 648 648 815 815
S 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0
Ttrain 7371 1256 9126 1472 9849 1578 10391 1652
Tpredict 3.68 3.68 4.04 4.04 4.23 4.23 4.46 4.46

Simulation results
Algorithm 2 was implemented. For Tables 4-18, the perfor-
mance results (training F1-score (F1train), testing F1-score
(F1test), training α (Fittrain), and testing α (Fittest))
of the best models (those with the largest F1train) were
recorded. The largest value for each row is bolded in Tables
4-18. The new GA used many generations of training with
new mutation operations and crossover operations. To bet-
ter evaluate the new algorithm, two CIFAR10 data partitions
were made based on the original 50,000 CIFAR10 train-
ing data (D[1], D[2], ..., D[50000]) and 10,000 CIFAR10
testing data (T[1], T[2], ..., T[10000]). The first data parti-
tion method generated Ntrain training data (D[1], D[2], ...,
D[Ntrain]) andNtest testing data (T[1], T[2], . . . , T[Ntest]).
The second data partition method generated Ktrain training
data (D[50001−Ktrain], D[50002−Ktrain], . . . , D[50000])
andKtest testing data (T[10001−Ktest], T[10002−Ktest],
. . . , T[10000]).

Simulation results using the first data partition method
Simulation results using the first data partition method are
shown in Tables 4-13.

Table 4: Model comparisons (Ntrain = 20000, Ntest =
5000, 15 epochs, 5 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.852 0.826 0.829 0.810 0.806 0.778 0.770 0.752
F1test 0.737 0.707 0.747 0.742 0.746 0.714 0.717 0.714
Fittrain 0.776 0.758 0.700 0.687 0.624 0.605 0.539 0.526
Fittest 0.696 0.675 0.643 0.639 0.582 0.560 0.502 0.500



Table 5: Model comparisons (Ntrain = 25000, Ntest =
6000, 15 epochs, 5 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.846 0.799 0.829 0.813 0.805 0.792 0.732 0.684
F1test 0.734 0.711 0.757 0.741 0.743 0.730 0.700 0.654
Fittrain 0.772 0.739 0.700 0.689 0.624 0.614 0.512 0.479
Fittest 0.694 0.678 0.650 0.639 0.580 0.571 0.490 0.458

Table 6: Model comparisons (Ntrain = 12500, Ntest =
5000, 10 epochs, 10 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.842 0.831 0.804 0.775 0.770 0.691 0.689 0.657
F1test 0.697 0.685 0.712 0.690 0.693 0.637 0.640 0.615
Fittrain 0.769 0.761 0.683 0.663 0.599 0.544 0.482 0.460
Fittest 0.668 0.660 0.618 0.603 0.545 0.506 0.448 0.431

Table 7: Model comparisons (Ntrain = 15000, Ntest =
6000, 20 epochs, 10 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.899 0.895 0.865 0.839 0.801 0.801 0.785 0.739
F1test 0.694 0.695 0.740 0.722 0.709 0.709 0.710 0.681
Fittrain 0.809 0.807 0.726 0.707 0.621 0.621 0.550 0.517
Fittest 0.666 0.667 0.638 0.625 0.556 0.556 0.497 0.477

Table 8: Model comparisons (Ntrain = 20000, Ntest =
7000, 20 epochs, 15 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.879 0.858 0.853 0.819 0.821 0.768 0.804 0.765
F1test 0.727 0.722 0.756 0.731 0.740 0.710 0.741 0.712
Fittrain 0.795 0.781 0.717 0.693 0.634 0.598 0.563 0.536
Fittest 0.689 0.685 0.649 0.631 0.581 0.557 0.519 0.498

Table 9: Model comparisons (Ntrain = 20000, Ntest =
7000, 25 epochs, 15 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.893 0.879 0.866 0.796 0.855 0.779 0.825 0.712
F1test 0.727 0.718 0.765 0.720 0.761 0.721 0.744 0.665
Fittrain 0.805 0.795 0.726 0.677 0.659 0.605 0.578 0.498
Fittest 0.689 0.683 0.656 0.624 0.593 0.565 0.521 0.466

Table 10: Model comparisons (Ntrain = 20000, Ntest =
7000, 20 epochs, 20 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.883 0.802 0.849 0.767 0.835 0.803 0.813 0.733
F1test 0.730 0.691 0.750 0.709 0.749 0.732 0.744 0.677
Fittrain 0.798 0.741 0.714 0.657 0.645 0.622 0.569 0.513
Fittest 0.691 0.664 0.645 0.616 0.584 0.572 0.521 0.474

Table 11: Model comparisons (Ntrain = 20000, Ntest =
7000, 25 epochs, 20 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.893 0.862 0.867 0.832 0.852 0.785 0.815 0.749
F1test 0.736 0.714 0.759 0.736 0.760 0.708 0.741 0.695
Fittrain 0.805 0.783 0.727 0.702 0.656 0.610 0.571 0.524
Fittest 0.695 0.680 0.651 0.635 0.582 0.556 0.519 0.487

Simulation results using the second data partition
method Simulation results using the second data partition
method are shown in Tables 14-18.

Table 12: Model comparisons (Ntrain = 15000, Ntest =
6000, 20 epochs, 25 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.899 0.886 0.870 0.825 0.837 0.760 0.780 0.748
F1test 0.711 0.714 0.741 0.725 0.733 0.695 0.693 0.686
Fittrain 0.809 0.800 0.729 0.698 0.646 0.592 0.546 0.524
Fittest 0.678 0.680 0.639 0.628 0.573 0.547 0.485 0.480

Table 13: Model comparisons (Ntrain = 20000, Ntest =
7000, 20 epochs, 25 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.883 0.880 0.854 0.836 0.835 0.772 0.803 0.779
F1test 0.727 0.732 0.762 0.743 0.745 0.715 0.740 0.714
Fittrain 0.798 0.796 0.718 0.705 0.645 0.600 0.562 0.545
Fittest 0.689 0.692 0.653 0.640 0.582 0.561 0.518 0.500

Table 14: Model comparisons (Ktrain = 20000, Ktest =
7000, 20 epochs, 5 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.875 0.849 0.840 0.819 0.807 0.807 0.772 0.759
F1test 0.725 0.703 0.747 0.736 0.736 0.736 0.721 0.708
Fittrain 0.793 0.774 0.708 0.693 0.625 0.625 0.540 0.531
Fittest 0.688 0.672 0.643 0.635 0.575 0.575 0.505 0.496

Table 15: Model comparisons (Ktrain = 20000, Ktest =
7000, 20 epochs, 10 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.863 0.855 0.851 0.824 0.817 0.801 0.776 0.730
F1test 0.716 0.715 0.765 0.734 0.742 0.732 0.720 0.687
Fittrain 0.784 0.779 0.716 0.697 0.632 0.621 0.543 0.511
Fittest 0.681 0.681 0.656 0.634 0.579 0.572 0.504 0.481

Table 16: Model comparisons (Ktrain = 20000, Ktest =
7000, 20 epochs, 15 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.878 0.867 0.852 0.850 0.830 0.748 0.795 0.763
F1test 0.732 0.723 0.761 0.756 0.756 0.698 0.734 0.711
Fittrain 0.795 0.787 0.716 0.715 0.641 0.583 0.557 0.534
Fittest 0.692 0.686 0.653 0.649 0.589 0.549 0.513 0.498

Table 17: Model comparisons (Ktrain = 20000, Ktest =
7000, 20 epochs, 20 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.878 0.850 0.852 0.835 0.832 0.811 0.807 0.785
F1test 0.731 0.717 0.764 0.748 0.755 0.739 0.743 0.731
Fittrain 0.795 0.775 0.716 0.705 0.642 0.628 0.565 0.550
Fittest 0.692 0.682 0.655 0.644 0.589 0.577 0.520 0.512

Table 18: Model comparisons (Ktrain = 20000, Ktest =
7000, 20 epochs, 25 generations)

Model: CM4
GA CM4 CM6

GA CM6 CM8
GA CM8 M10

GA M10

F1train 0.887 0.868 0.857 0.804 0.830 0.803 0.804 0.769
F1test 0.730 0.720 0.768 0.734 0.757 0.727 0.743 0.715
Fittrain 0.801 0.788 0.720 0.683 0.641 0.622 0.563 0.538
Fittest 0.691 0.684 0.658 0.634 0.590 0.569 0.520 0.501

Performance analysis
Comparison between GA-based MCNN models and non-
GA-based MCNN models Simulation results as shown in
Tables 4-13 for the first data partition and Tables 14-18 for



the second data partition indicated that four MCNN models
(i.e., CM4

GA, CM6
GA, CM8

GA and M10
GA) generated by Al-

gorithm 2 with the new GA outperformed four MCNN mod-
els (i.e., CM4, CM6, CM8 and M10) without the new GA
in terms of testing F1-scores for 58 cases among 60 cases,
respectively; CM8

GA tied with CM8 as shown in Tables 7
and 14. Thus, Algorithm 2 with the new GA is useful.

Comparison between CMCNN models and non-
compressed MCNN models Simulation results as shown
in Tables 4-18 indicated that three CMCNN models with
the new GA had lower testing F1-scores and lower memory
usage than a non-compressed MCNN model (M10

GA) with
the new GA for 43 cases among 45 cases; CM4

GA had
higher testing F1-scores than M10

GA as shown in Tables 17
and 18. In addition, three CMCNN models without the new
GA had lower testing F1-scores and lower memory usage
than a non-compressed MCNN model (M10) without the
new GA for 42 cases among 45 cases; CM4 had higher
testing F1-scores than M10 as shown in Tables 14 and
17, and CM8 had higher testing F1-scores than M10 as
shown in Table 16. Thus, CMCNN models can outperform
a non-compressed MCNN model.

Overall comparisons The best CNN models come from
the two smallest CMCNNs in terms of the number of con-
volutional layers. Also, all bolded testing F1-scores are for
CMCNN models using the new GA, showing that the new
GA is useful. Although the best CMCNN selected by Al-
gorithm 2 does not have the best testing F1-scores, it has
the shortest execution time (smallest power usage) and the
smallest model size (454KB, smallest memory usage).

Conclusions
Simulation results show that CMCNNs can achieve bet-
ter performance, shorter training time (i.e., less power con-
sumption), and less memory usage (model size) than MC-
NNs. For example, CM4

GA with 454KB model size is more
accurate, memory-efficient, power-efficient, and faster than
M10 with 815KB model size. Results show that the new
GA-based model selection algorithm can perform better than
a random model selection algorithm. CMk

GA outperformed
CMk for k = 4, 6, 8 in most simulation cases, so the
new GA is effective in automatically finding the best CM-
CNNs. However, the new GA led to overfitting. Effective,
fast, power-efficient, and memory-efficient CMCNNs using
a small number of convolutional layers with different acti-
vation functions can be used in various applications, espe-
cially in computer vision. With faster training, computer sys-
tems and mobile devices running CMCNNs can save power,
which would increase power efficiency and battery life. CM-
CNNs are more memory-efficient than MCNNs; the model
sizes of CMCNNs are much smaller than those of MCNNs.

Future works
The fitness function for GA does not have to be linear, and
it can be changed and optimized to meet different users’ re-
quirements, especially the weights. Other compressed deep

neural networks, such as ResNets and DenseNets with a re-
duced number of convolutional layers using different acti-
vation functions, will be developed to increase classifica-
tion accuracy, reduce training times, reduce computational
power, and reduce memory usage (model size), especially
for systems with limited power and memory.

Other NAS methods that are not evolution-based search
algorithms will be tested. Other general optimization tech-
niques, such as particle swarm optimization (Sinha et al.
2018; Tan et al. 2019) and microcanonical annealing (Ayumi
et al. 2018), will be used to develop more effective CMCNN
model selection algorithms. Since the CMCNN model se-
lection among a large number of potential CMCNNs takes
a very long time for many generations, parallel optimization
techniques will be developed.

A new compact neural network using novel differential
equation unit activation functions could achieve comparable
performance compared with bigger neural networks (Torka-
mani et al. 2019). CMCNNs using the new differential equa-
tion unit activation functions and other commonly used ac-
tivation functions will be used for new CMCNN model se-
lection simulations. A transfer learning method will be used
to speed up training CMCNNs by reusing previously opti-
mized parameters for AIoT applications.
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